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Notwithstanding the apparent incompatibility between octahedral and icosahedral symmetries,

fragments with the two types of symmetry coexist in many molecules and crystals, as evidenced

by continuous shape and symmetry measures. A geometric analysis of Platonic and Archimedean

polyhedra and of a variety of molecular and crystal structures strongly suggests that octahedral

symmetry is latent in icosahedral polyhedra and vice versa. In this Feature Article, new concepts

and structural data from the literature combine to offer a perspective view of complex molecular

and extended structures. Its influence on the common cubic packing of icosahedral molecules is

discussed for a variety of examples, including water clathrates, dodecahedrane,

Buckminsterfullerene, the Pd145 and Mo132 clusters and several intermetallic phases.

Kepler stared, weeping, at the five polyhedra

fit into each other, systematic, perfect,

with musical order up to the great sphere.

He loved the dodecahedron, wept over the icosahedron

for its inconsistencies and intricacies

lovely and odd but, oh!, so necessary,

since one cannot conceive more perfect solids

beyond the five known, in three dimensions.

Gabriel Celaya

Introduction

The highest degree of symmetry that can be found in a

molecule is represented by the icosahedral (Ih) and octahedral

(Oh) point groups.
1 While they have some symmetry opera-

tions in common, forming the D3d and Th subgroups (1),2

fivefold rotations are exclusive of the icosahedral and fourfold

rotations appear only in the octahedral point group. We are

concerned in this work with systems in which a set of atoms of

octahedral symmetry is combined with another one of icosa-

hedral symmetry in a composite that has formally Th
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and Institut de Quı́mica Teórica i Computacional, Universitat de
Barcelona, Martı́ i Franquès 1- 11, 08028 Barcelona, Spain
w Dedicated to David Avnir on his 60th birthday.
z Electronic supplementary information (ESI) available: Table S1:
Shape measures of the M8 and X12 groups relative to the cube and
the icosahedron, respectively, in the family of compounds of general
formula [M8(AX2)6]. Fig. S2: Representation of one plane of the
Cs8Sn46 structure showing four of the six edge-sharing Cs12 icosahedra
connected to the central one that are responsible for a primitive cubic
packing. Fig. S3: Perspective view of the nearly perfect cuboctahedral
arrangement of the nearest neighbour (H2O)60 clusters that form part
of the (H2O)100 nanodrops in the guanidinium salt of a Mo132
complex. See DOI: 10.1039/b719615f

This journal is �c The Royal Society of Chemistry 2008 Chem. Commun., 2008, 2717–2725 | 2717

FEATURE ARTICLE www.rsc.org/chemcomm | ChemComm



symmetry, losing the four- and fivefold operations of the

octahedron and the icosahedron, respectively. An interesting

finding is that in many chemical systems of this type each

component retains all or most of its original higher symmetry

in the aggregate.

A rather common structural motif in chemistry is a poly-

hedral set of atoms which often appears circumscribed by one

or more concentric polyhedral shells, as in Keplerates.3 The

name Keplerate has been proposed for a group of atoms

organized in spherical shells around a central point in such a

way that each set of symmetry-related atoms corresponds to

the vertices of a Platonic or a generalized Archimedean solid.4

Two successive shells in those systems are connected—via

ionic, metallic, covalent or hydrogen bonding—by vertex

(2a), edge (2b) or face (2c) capping, as schematically shown

in 2, where the bonding between shells A and B is indicated by

dashed lines. The shape of a polyhedron Bm circumscribed

around polyhedron An is therefore determined by the chemical

bonding between the two shells, following precise geometrical

rules.5,6 Furthermore, we usually expect the symmetry of two

shells to be the same or to present a group-subgroup relation-

ship, as in the ligand polyhedral model proposed by Johnson

that considers the nested polyhedra formed by a cluster of

metal atoms and its coordinated ligands.7 For instance, in

clusters of the general formula [M6(m-X)8L6], in which the

metal atoms form a regular octahedron, the terminal ligands L

form also an octahedron and the bridging ligands X a cube, all

three polyhedra belong to the Oh symmetry point group. In

another example, a Pd145 cluster reported by Dahl and co-

workers,8 up to six nested Pd polyhedra can be found, all of

them presenting icosahedral symmetry. It has also been

shown9 that a number of Keplerates present concentric poly-

hedra having all icosahedral symmetry and this constitutes a

general Aufbau principle. Nevertheless, a variety of molecular

structures show that the three symmetries of the Platonic

solids (Oh, Ih and Td) have some hidden relationships that

may show up under specific substitution patterns. In particu-

lar, we show in this work that the octahedral symmetry is

implicit in the icosahedron and the dodecahedron, as well as in

Archimedean polyhedra with icosahedral symmetry. Further-

more, we will show that those relationships appear in a variety

of molecules and play a crucial role in their packing in the

solid state.

Let us consider as a first example the C60 fullerene, which

has the shape of a truncated icosahedron belonging to the

icosahedral symmetry point group Ih. In its halogenated

derivatives C60X24 (X = Cl, Br), prepared and characterized

by Troyanov et al.,10 the halogen atoms are beautifully

organized at the vertices of a slightly distorted rhombicub-

octahedron (Fig. 1). It is remarkable that by appending Br

atoms to a structure with icosahedral symmetry we can

generate a concentric shell with approximately octahedral

symmetry. Is this a coincidence or a rarity? Or is there some

deeper relationship between the two most symmetrical groups?

A closer look at the C60 structure tells us that it could be

described as an octahedral arrangement of six fulvalene units

linked through C–C bonds (Fig. 1). Indeed, the centers of such

fulvalene units form a perfect octahedron, as revealed by a

zero value of its octahedral shape measure,11 indicating that

the octahedral symmetry is latent in a set of edge centers of the

truncated icosahedron. The fact that the substituted carbon

atoms do not form a square accounts for the deviation of Br24
from a perfect rhombicuboctahedron. But that does not rule

out the latency of octahedral symmetry in the truncated

icosahedron. For instance, Hirsch and co-workers were able

to cyclopropanate precisely the six central carbon–carbon

bonds of the fulvalene units,12 and the six additional carbon

atoms form a perfect octahedron. Similarly, theoretical calcu-

lations on an epoxidized fullerene C60O6 show the six oxygen

atoms to form a perfect octahedron,13 although so far only a

singly epoxidized fullerene seems to have been prepared.14

Latent octahedral symmetry can be found even in the most

simple and perfect icosahedral polyhedra, the dodecahedron

and the icosahedron. It suffices to select eight faces of the

icosahedron related by symmetry planes and place a point at

each of such face centers (partial face augmentation5) to obtain

a perfect cube (Fig. 2(a)). Given the duality relationship

Fig. 1 View of the structure of C60Br24 that combines the icosahedral

symmetry of the C60 fullerene skeleton with a concentric truncated

cubic Br24 shell (yellow spheres). The fullerene skeleton is depicted as

six fulvalene units (right) in different colors, arranged at the vertices of

an octahedron and linked through C–C bonds depicted in black. The

yellow sticks do not represent chemical bonds and are shown only to

highlight the Br24 rhombicuboctahedron.
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between the dodecahedron and the icosahedron, that converts

one polyhedron into the other one by exchanging vertices by

face centers, it is obvious that a cube can also be generated from

a dodecahedron by selecting a subset of eight vertices related by

orthogonal symmetry planes (Fig. 2(b)). It follows that icosa-

hedral Platonic solids bear also a relationship with the octahe-

dron. Taking advantage of the duality relationship between the

cube and the octahedron, we need only replace the six faces of

the cubes in Fig. 2(a) and (b) by vertices. It can then be seen that

this implies augmentation (capping) of six edges, both for the

icosahedron and the dodecahedron (Fig. 2(c) and (d)).

If the cube and the octahedron can be generated from the

dodecahedron and the icosahedron, the inverse relationship

should also hold. The simplest relationship from the chemical

point of view corresponds to the generation of an icosahedron

around a cube via edge augmentation, i.e., placing twelve

atoms above the centers of the twelve edges of the cube. Such

a relationship can be appreciated in Fig. 2a. Similarly, cubic

polyhedra are imprinted in all the icosahedral Platonic and

Archimedean solids, as shown by the examples given in

Table 1 and represented in Fig. 2.

The chemical relevance of one such fascinating geometrical

construction is exemplified by a family of compounds of the

general formula [M8(AX2)6], in which M is a tricoordinated

monocation of a metal of the copper group and AX2 is a

doubly bridging ligand (with X = S or Se; A = C, P or an

Fig. 2 Polyhedra with octahedral or tetrahedral symmetry implicit in some Platonic, Archimedean and Catalan polyhedra of icosahedral

symmetry. (a) Partial face augmentation (spheres) of the icosahedron (sticks) that produces a perfect cube. (b) Subset of eight vertices of the

dodecahedron with a perfect cubic shape. (c) Formation of an octahedron (spheres) by augmentation of six edges of the icosahedron (sticks). (d)

Build-up of an octahedron (spheres) by augmentation of six edges of the dodecahedron (sticks). (e) Cuboctahedron in a dodecahedron. (d)

Tetrahedron in a dodecahedron. (g) Tetrahedron in an icosahedron. (h) Cube (centers of the highlighted triangular faces) in an icosidodecahedron.

(i) Octahedron in an icosidodecahedron, (j) cube (centers of highlighted square faces) and octahedron (centers of highlighted triangular faces) in a

rhombicosidodecahedron. (k) Cube in a truncated icosahedron. (l) Octahedron in a truncated icosahedron. (m) Cuboctahedron in a truncated

icosahedron. (n) Cube (centers of highlighted triangular faces) and octahedron (spheres) in a truncated dodecahedron. (o) Octahedron (centers of

highlighted squares) in a truncated icosidodecahedron. (p) Cube (centers of highlighted hexagons) in a truncated icosidodecahedron. (q) Cube in a

pentakisdodecahedron.
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organic C2 fragment). The eight metal atoms are arranged at

the vertices of a cube, whose edges correspond to weak d10–d10

bonding interactions (Fig. 3). Since each metal atom is co-

ordinated in a monodentate mode by three independent AX2

ligands with a planar trigonal geometry, there are eight X3

triangles corresponding to the metal coordination spheres at

the vertices of the cube, in which the interligand X� � �Xinter

distances are related to the M–X bond distances as in eqn (1).

X� � �Xinter = O3(M� � �X) (1)

In addition, there are six X� � �Xintra intraligand distances

within the AX2 groups, resulting in a total of 30 X� � �Xintra and

X� � �Xinter edges that form a polyhedron with twenty triangu-

lar faces. The only additional requirement for such a polyhe-

dron to be a regular icosahedron is that the intra- and

interligand distances X� � �Xintra and X� � �Xinter be identical.

Therefore, one should expect the [M8(AX2)6] buildings to form

nearly perfect X12 icosahedra when the choice of metal M,

donor atoms X and spacer A is such that the X� � �Xintra

distance obeys eqn (1). Among the family of compounds

analyzed (see ESIz for data and references), the best example

corresponds to the [Cu8(dtsq)6]
4� anion (dtsq = dithiosqua-

rate, Fig. 3),15 for which the M8 set forms a practically perfect

cube (cubic shape measure of 0.03) and the X12 group has a

nearly perfect icosahedral shape (icosahedral shape measure of

0.04). The rest of the compounds found form also very nice

cubes and slightly distorted icosahedra. The distortion of the

icosahedra is seen to correspond to deviations from eqn (1),

since the icosahedral shape measures increase exponentially as

the X� � �Xintra : O3(M� � �X) ratio deviates from unity (Fig. 4).

Another case of latent symmetry that involves the octahe-

dron can be found in the structure of [Li26(m6-O)(ER)12] (E =

P or As).16,17 In those molecules we find around a central oxo

anion a Li6 octahedron circumscribed in turn by a Li20
dodecahedron (Fig. 5(a)). The vertices of the octahedron are

precisely aligned with the centers of edges of the dodecahe-

dron, as discussed above (Fig. 2(d)). In fact, the relationship in

such a structure is still more rewarding, since a P12 icosahe-

dron appears roughly at the same distance of the central

oxygen atom than the Li20 dodecahedron (Fig. 5(b)), the two

being connected through a duality relationship5 and compos-

ing together a 32-vertex Frank–Kasper polyhedron.6 The

corresponding shape measures for these polyhedra (Table 3,

see later) confirm that all of them show a high degree of

octahedral and icosahedral symmetry, respectively.

Table 1 Examples of polyhedra with octahedral or tetrahedral symmetry generated by capping components of icosahedral polyhedra

Family Icosahedral polyhedron Capping Octahedral polyhedron

Platonic Dodecahedron 8 vertices Cube
6 edges Octahedron
12 cornersa Cuboctahedron
4 vertices Tetrahedron

Icosahedron 8 face centers Cube
6 edges Octahedron
4 faces Tetrahedron

Archimedean Icosidodecahedron 8 triangular faces Cube
6 vertices Octahedron

Rhombicosidodecahedron 8 triangular faces Cube
6 tetragonal faces Octahedron

Truncated Icosahedron 8 hexagonal faces Cube
6 edges Octahedron
6 pentagonal faces + 6 edges Cuboctahedron

Truncated dodecahedron 8 triangular faces Cube
6 edges Octahedron

Truncated Icosidodecahedron 8 hexagonal faces Cube
6 tetragonal faces Octahedron

Catalan Pentakis dodecahedron 8 vertices Cube
Rhombic triacontahedron 8 vertices Cube

6 faces Octahedron

a We define a ‘‘corner’’ as the centroid of two vertices of a pentagon in relative positions 1 and 3.

Fig. 3 Icosahedron of sulfur atoms (yellow sticks) circumscribing a

cube of Cu atoms in the [Cu8(dtsq)6]
4� anion. Striped cylinders

indicate some of the inter-ligand X� � �X0 edges that form the coordina-

tion sphere of a Cu atom, while the gray cylinder corresponds to an

intraligand X� � �X edge.
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Having seen the latency of the cube in icosahedral polyhe-

dra, it automatically comes to our minds the fact that fullerene

and other icosahedral molecules crystallize in cubic space

groups, as seen by a few examples shown in Table 2. A naı̈f

interpretation would be that their cubic lattices result from the

nearly-spherical nature of these molecules that pack in the

same way as the atoms of, e.g., Ni, Cu, Ag, Au, Al or Pb18 in

their elemental structures. However, a careful analysis of

intermolecular interactions will show us that the latent cubic

symmetry of those icosahedral molecules is in register with

their cubic lattices.

Let us start by commenting on one of the simplest examples,

that of the clathrate I structure present in the hydrates of a

variety of small molecules such as CO2 or methane (Table 2).

One way of describing the clathrate I structure focuses on the

dodecahedron formed by twelve water molecules, which estab-

lishes hydrogen bonds with eight neighbouring dodecahedra

through the eight cubic vertices highlighted in Fig. 2(b), there-

fore resulting in a bcc packing of dodecahedra with space

group Pm�3n (Fig. 6).

A paradigmatic case of cubic crystal structure of an organic

compound is that of dodecahedrane (C20H20), a long sought

for dodecahedral molecule. In the solid state it presents a cubic

close packing (fcc),19,20 in which each molecule is surrounded

by twelve nearest neighbours placed at the vertices of a

Fig. 4 Dependence of the icosahedral shape measure of the X12 set on

the X� � �Xintra : O3(M� � �X) distance ratio in the family of [M8(AX2)6]

compounds. The continuous line corresponds to a least-squares fitting

to an exponential (R2 = 0.990). The geometrical expectation for a

perfect icosahedron and trigonal-planar coordination sphere of the

metal atoms corresponds to a ratio of 1 (eqn (1)).

Table 2 Cubic crystal structures of molecules or clusters with icosahedral symmetry

Compound Space group No. Packing Cluster Polyhedrona S(polyhedron) S(C5) Ref.

C20H20 (dodecahedrane) Fm�3 202 fcc C20 Dodecahedron 0.00 0.00 19
H20 Dodecahedron 0.01 0.01

C60 (fullerene) Pa�3 205 fcc C60 Truncated Icosahedron 0.01 0.01 23
0.01 0.00 21

C60�H2CQCH2 Pa�3 205 fcc C60 Truncated Icosahedron 0.00 0.00 27
K3Ba3C60 Im�3 204 bcc C60 Truncated Icosahedron 0.00 0.00 28
C60�O2 Fm�3 202 fcc C60 Truncated Icosahedron 0.06 0.06 29
K2(B12H12) Fm�3 202 fcc B12 Icosahedron 0.01 0.00 30

H12 Icosahedron 0.00 0.00
Cs2(B12H12) Fm�3 202 fcc B12 Icosahedron 0.00 0.00 31

H12 Icosahedron 0.05 0.05
Cr3Si (Cr3Si type) Pm�3n 223 bcc Cr12 Icosahedron 0.81 0.81 32, 51
Cs8Sn46 (K4Si23 type) Pm�3n 223 bcc Sn20 Dodecahedron 0.19 0.19 33

cubic Cs12 Icosahedron 0.81 0.81
Na8Si46 (K4Si23 type) Pm�3n 223 bcc Si20 Dodecahedron 0.05 0.05 34

cubic Na12 Icosahedron 0.81 0.81
WAl12 (Al12W type) Im�3 204 bcc WAl12 Icosahedron 0.03 0.03 35
LaFe4P12 (LaFe4P12 type) Im�3 204 bcc Fe8P12 Dodecahedron 0.42 0.42 36
CaCu3Ti4O12 (NaMn7O12 type) Im�3 204 bcc CaO12 Icosahedron 0.05 0.04 37
NaK9Tl13 Im�3 204 bcc Tl12 Icosahedron 0.06 0.06 38
Li13Cu6Ga21 Im�3 204 bcc Ga12 Icosahedron 0.00 0.00 39

Li20 Dodecahedron 0.00 0.00
Cu12 Icosahedron 0.15 0.15

Na13(Cd1�xTlx)27 Im�3 204 bcc (Cd, Tl)12 Icosahedron 0.00 0.00 40
Na20 Dodecahedron 0.00 0.00
Cd12 Icosahedron 0.16 0.19

‘‘Pd145’’ Pa�3 205 fcc Pd12 Icosahedron 0.00 0.00 8
‘‘Mo132’’ Fm�3 202 fcc Mo12 Icosahedron 0.00 0.00 41
(CO2)7.34(D2O)46 Pm�3n 223 bcc O20 Dodecahedron 0.04 0.04 42
(CH4)8(H2O)46 Pm�3n 223 bcc O20 Dodecahedron 0.03 0.03 43

a Circumscribed polyhedra in the same structure are listed from the innermost to the outermost one.

Fig. 5 Partial views of the structure17 of [Li26(m6-O)(PR)12] showing

(a) the Li6 octahedron inscribed in a Li20 dodecahedron and (b) the

same octahedron inscribed in a P12 icosahedron.
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cuboctahedron. The shortest distances between two neigh-

bouring dodecahedra involve two C–H� � �H–C contacts (2.40

Å) corresponding to positions 1 and 3 of a pentagon

(Fig. 7(a)). In fact, since each vertex belongs to three con-

nected pentagons, each hydrogen atom involved in intermole-

cular interactions is connected to three different neighbours,

forming altogether a tetrahedron of hydrogen bonds

(Fig. 7(b)). The outcome, a cuboctahedron (i.e., an fcc pack-

ing) of dodecahedra surrounding each particular dodecahe-

drane molecule, can be seen in Fig. 7(c). In contrast with the

capping of the twelve faces of the dodecahedron at their

centers, that gives an icosahedron, a set of centroids of atoms

in relative positions 1 and 3 of each pentagonal face forms a

cuboctahedron, as shown in Fig. 7(d). It was latent in the

dodecahedron and it was enough for us to look carefully at the

crystal structure of dodecahedrane to recognize its presence.

Unsurprisingly, the C3 symmetry axes and the latent C4

symmetry axes of the cuboctahedron are coincident with those

of the cube that is hidden in the dodecahedron, as

discussed above.

Buckminsterfullerene molecules, with their truncated icosa-

hedral shape, also crystallize in an fcc structure, in such a way

that each molecule is surrounded by a cuboctahedron of

nearest neighbours. The cuboctahedron that defines the near-

est neighbour directions is formed by the centers of six

pentagonal faces related through an S6 improper rotation

(Fig. 8(a) and (b)) and the centers of six edges shared by two

hexagons and related by the same symmetry operation. Such

an arrangement of the nearest neighbour directions might

suggest that the corresponding intermolecular interactions

cannot be equivalent. But the shortest intermolecular contacts

(3.175 Å) appear precisely between pentagonal rings and C–C

bonds shared by two hexagons21 (Fig. 8(c)). So each molecule

makes ring-edge contacts to six nearest neighbours and edge-

ring contacts to six more nearest neighbours.

The octahedral symmetry implicit in icosahedral molecules

is probably at the root of the cubic crystal structures found for

other types of compounds (Table 2), including boranes, inter-

metallic phases and polyoxometallates. We notice also that it

is not rare to find icosahedral viruses that crystallize in cubic

space groups, such as the turnip yellow mosaic virus,24 the

simian virus 4025 or the polyoma virus.26 According to the

space groups in which they crystallize, we can find cubic close

packed (fcc), primitive cubic or body centered cubic (bcc)

structures. It must be stressed that some of the compounds

analyzed in Table 2 belong to the structural types Cr3Si,

K4Si24, Al12W, LaFe4P12 and NaMn7O12, which comprise

altogether well over five hundred structures. For many such

structures based on icosahedral polyhedra, the corresponding

shape measures tell us that the cubic crystal structure does not

prevent individual sets of atoms to be perfect icosahedra,

dodecahedra or truncated icosahedra. It is also interesting to

analyze those cubic structures in which the icosahedral frag-

ments are distorted to a significant degree, as indicated by

S(polyhedron) values larger than 0.1, and compare them with

the corresponding C5 symmetry measures (Table 2). In practi-

cally all cases the two measures present the same value,

indicating that the distortion of the icosahedral shape is due

to the loss of the fivefold rotational symmetry. We have

furthermore observed that in those cases at least one trigonal

symmetry axis is retained, as indicated by S(C3) values of 0.00.

Such a trigonal distortion in, e.g., the Cs12 icosahedral cluster

surrounding a CsSn20 dodecahedron in Cs8Sn46, consists in a

rotation of six vertices relative to two opposing triangular

faces (3), thus retaining the corresponding threefold rotational

axis while losing the fivefold rotations (Th symmetry point

group). As a result of such a distortion, six edges of the

icosahedron are shortened (three of them shown in projection

Fig. 6 Cubic packing of dodecahedra of water molecules surrounding

CH4 in the clathrate I structure of the methane hydrate

(CH4)8(H2O)46.

Table 3 Nearly cubic crystal structures of molecules or clusters with icosahedral or tetrahedral symmetry

Compound Space group No. Cluster Polyhedron S(polyhedron) Packing S(packing)a S(C5) Ref.

Sm2.75C60 Pbca 61 C60 Truncated Icosahedron —b fcc o0.01 —b 44
A3(B12H12)X

c R�3m 166 B12 Icosahedron r0.001 fcc 0.12–0.19 r0.001 45
B6O R�3m 166 B12 Icosahedron 0.18 fcc 0.09 0.15 46
La20Ni30 R�3 148 La20 Dodecahedron 0.12 cubic 0.16 0.12 47
[Li26(m6-O)(PR)12] P21/c 14 Li6 Octahedron 0.41 bcc 0.02 16

P12 Icosahedron 0.04 0.02
Li20 Dodecahedron 0.07 0.07

[Li26(m6-O)(AsR)12] P21/c 14 Li6 Octahedron 0.40 bcc 0.02 17
As12 Icosahedron 0.05 0.02
Li20 Dodecahedron 0.07 0.06

a Shape measure of the nearest neighbours relative to the cuboctahedron (fcc), the cube (bcc) or the octahedron (simple cubic packing). b Atomic

coordinates of C atoms not available. c A = K, Rb, Cs, NH4; X = Cl, Br.

2722 | Chem. Commun., 2008, 2717–2725 This journal is �c The Royal Society of Chemistry 2008



in 4) but their centers retain the octahedral symmetry. These

are precisely the edges that are shared between neighbouring

icosahedra resulting in a perfect cubic packing (see Fig. S2,

ESIz) in spite of the symmetry loss of the Cs12 icosahedra.

Even in some cases in which an icosahedral cluster does not

crystallize in a cubic space group, we see that the crystal

structures are nearly cubic. For those systems we analyze the

centroids of such clusters and calculate the shape measure of

the polyhedron formed by the nearest neighbours (Table 3).

We find them to have the practically perfect shapes expected

for cubic crystal structures: a cuboctahedron for a face cen-

tered cubic (fcc) packing, a cube for a body centered (bcc)

packing and an octahedron for a primitive cubic lattice. Three

specific cases are worth a more detailed comment. One case is

that of a Mo132 compound that showcases a beautiful nano-

droplet formed by one hundred molecules of water organized

in three nested icosahedral polyhedra.48 While it does not

crystallize in a cubic space group as does a related Mo132
complex shown in Table 2, but in the trigonal R�3m group, the

packing of the nanodroplets and the surrounding Mo132 units

corresponds to a nearly perfect fcc structure, as indicated by a

cuboctahedral shape measure of the twelve nearest neighbours

of 0.001 (see Fig. S3, ESIz). The second remarkable case

corresponds to the complex structure composed by icosahe-

dral clusters in the Ag188 compound reported by Fenske and

co-workers,49 which crystallizes in a space group with very low

symmetry (P�1), but is still pretty close to an fcc structure, with

S(cuboctahedron) = 0.10 for the twelve nearest neighbours.

The third case is that of a Fe30Mo72 capsule built around a

PMo12 Keggin unit.50 In that compound, successive shells

show tetrahedral (phosphate), octahedral (Mo12 cuboctahe-

dron) and icosahedral (Fe30 icosidodecahedron, Mo12 icosa-

hedron and Mo60 rhombicosidodecahedron) symmetries.

Finally, even if the space group in which this compound

crystallizes (Cmca) is not cubic, the icosahedral envelope gives

a quite regular cubic fcc packing (cuboctahedral shape mea-

sure of 0.06 for the twelve nearest neighbors).

It is to be noted that in those structures with several

concentric icosahedral clusters, such as Li13Cu6Ga21 and the

related Na13(Cd1�xTlx)27, the outermost icosahedron loses a

significant part of its fivefold symmetry, probably due to the

onset of interactions with the surroundings of cubic symmetry,

whereas the inner polyhedra are practically unaffected by the

cubic packing and retain the full icosahedral symmetry. A

Fig. 7 (a) View of the short C–H� � �H–C contacts between two neighbouring dodecahedrane molecules in the crystal structure of C20H20. (b)

Arrangement of four dodecahedrane molecules around a tetrahedron of four connected H atoms (hydrogen atoms not involved in hydrogen

bonding between the four molecules partially shown are omitted for clarity). (c) Crystal structure of dodecahedrane showing twelve nearest-

neighbour molecules in a cuboctahedral arrangement. (d) Latent cuboctahedron (balls and sticks) in an ideal dodecahedron (sticks).
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similar situation, but to a lesser degree, is found in dodecahe-

drane and in the caesium salt of the dodecaborane anion, in

which the outer polyhedra of hydrogen atoms involved in

intermolecular interactions are slightly distorted from the

dodecahedron and the icosahedron, respectively, whereas the

inner carbon or boron clusters form practically perfect icosa-

hedral polyhedra. In the potassium salt of the same borane

anion, though, the icosahedral symmetry of the hydrogen

atoms seems to be not perturbed by intermolecular interac-

tions, and probably a study of a larger number of

examples would be needed before a clear statement can

be made about the effect of cubic packing on concentric

icosahedral polyhedra.

Conclusions

The discussion above clearly shows that there are some

implicit relationships between the high symmetry point groups

Ih and Oh that cannot be expressed through symmetry

group–subgroup hierarchies. Those relationships are present

in all the ideal Platonic and Archimedean polyhedra and a

variety of chemical manifestations in nested polyhedral mole-

cules or clusters of extended structures have been presented

here. While the usual idea is that nested polyhedra must have

the same symmetry, this situation occurs only when a full set

of elements of a polyhedron (faces, edges or vertices) is

augmented to form the next shell. In contrast, we have shown

that polyhedra with cubic symmetry develop by partial aug-

mentation of an inner shell of icosahedral symmetry and vice

versa.

The relationship between octahedral and icosahedral poly-

hedra is extensively reflected in the cubic packing of a variety

of icosahedral molecules or clusters in the solid state. The

incompatibility between the icosahedral point group and

crystallographic symmetry is nicely explained by O’Keefe

and Hyde in the following terms:35 ‘‘Strictly regular icosahe-

dra are incompatible with crystallographic symmetry (which

precludes the presence of 5-fold axes); but nature is very clever

at designing periodic structures that feature almost regular

icosahedra.’’ The shape and symmetry analysis presented here

suggests an alternative chemical view of this problem: When

molecules with icosahedral symmetry establish intermolecular

interactions using their latent octahedral symmetry, they crys-

tallize in a cubic or nearly cubic crystal system.
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